Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Curr Opin Allergy Clin Immunol ; 21(6): 569-575, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1356717

ABSTRACT

PURPOSE OF REVIEW: Molecular forms of allergen-specific immunotherapy (AIT) are continuously emerging to improve the efficacy of the treatment, to shorten the duration of protocols and to prevent any side effects. The present review covers the recent progress in the development of AIT based on nucleic acid encoding allergens or CpG oligodeoxynucleotides (CpG-ODN). RECENT FINDINGS: Therapeutic vaccinations with plasmid deoxyribonucleic acid (DNA) encoding major shrimp Met e 1 or insect For t 2 allergen were effective for the treatment of food or insect bite allergy in respective animal models. DNA expressing hypoallergenic shrimp tropomyosin activated Foxp3+ T regulatory (Treg) cells whereas DNA encoding For t 2 down-regulated the expression of pruritus-inducing IL-31. Co-administrations of major cat allergen Fel d 1 with high doses of CpG-ODN reduced Th2 airway inflammation through tolerance induction mediated by GATA3+ Foxp3hi Treg cells as well as early anti-inflammatory TNF/TNFR2 signaling cascade. Non-canonical CpG-ODN derived from Cryptococcus neoformans as well as methylated CpG sites present in the genomic DNA from Bifidobacterium infantis mediated Th1 or Treg cell differentiation respectively. SUMMARY: Recent studies on plasmid DNA encoding allergens evidenced their therapeutic potential for the treatment of food allergy and atopic dermatitis. Unmethylated or methylated CpG-ODNs were shown to activate dose-dependent Treg/Th1 responses. Large clinical trials need to be conducted to confirm these promising preclinical data. Moreover, tremendous success of messenger ribonucleic acid (mRNA) vaccines against severe acute respiratory syndrome coronavirus 2 must encourage as well the re-exploration of mRNA vaccine platform for innovative AIT.


Subject(s)
Desensitization, Immunologic/methods , Hypersensitivity, Immediate/therapy , Oligodeoxyribonucleotides/administration & dosage , Vaccines, DNA/administration & dosage , Vaccines, Synthetic/administration & dosage , Allergens/administration & dosage , Allergens/genetics , Allergens/immunology , Animals , Clinical Trials as Topic , Desensitization, Immunologic/trends , Disease Models, Animal , Drug Evaluation, Preclinical , Humans , Hypersensitivity, Immediate/immunology , Oligodeoxyribonucleotides/genetics , Oligodeoxyribonucleotides/immunology , Plasmids/administration & dosage , Plasmids/genetics , Plasmids/immunology , Treatment Outcome , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
2.
J Virol ; 94(24)2020 11 23.
Article in English | MEDLINE | ID: covidwho-985727

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory illness and has a high mortality of ∼34%. However, since its discovery in 2012, an effective vaccine has not been developed for it. To develop a vaccine against multiple strains of MERS-CoV, we targeted spike glycoprotein (S) using prime-boost vaccination with DNA and insect cell-expressed recombinant proteins for the receptor-binding domain (RBD), S1, S2, SΔTM, or SΔER. Our S subunits were generated using an S sequence derived from the MERS-CoV EMC/2012 strain. We examined humoral and cellular immune responses of various combinations with DNA plasmids and recombinant proteins in mice. Mouse sera immunized with SΔER DNA priming/SΔTM protein boosting showed cross-neutralization against 15 variants of S-pseudovirions and the wild-type KOR/KNIH/002 strain. In addition, these immunizations provided full protection against the KOR/KNIH/002 strain challenge in human DPP4 knock-in mice. These findings suggest that vaccination with the S subunits derived from one viral strain can provide cross-protection against variant MERS-CoV strains with mutations in S. DNA priming/protein boosting increased gamma interferon production, while protein-alone immunization did not. The RBD subunit alone was insufficient to induce neutralizing antibodies, suggesting the importance of structural conformation. In conclusion, heterologous DNA priming with protein boosting is an effective way to induce both neutralizing antibodies and cell-mediated immune responses for MERS-CoV vaccine development. This study suggests a strategy for selecting a suitable platform for developing vaccines against MERS-CoV or other emerging coronaviruses.IMPORTANCE Coronavirus is an RNA virus with a higher mutation rate than DNA viruses. Therefore, a mutation in S-protein, which mediates viral infection by binding to a human cellular receptor, is expected to cause difficulties in vaccine development. Given that DNA-protein vaccines promote stronger cell-mediated immune responses than protein-only vaccination, we immunized mice with various combinations of DNA priming and protein boosting using the S-subunit sequences of the MERS-CoV EMC/2012 strain. We demonstrated a cross-protective effect against wild-type KOR/KNIH/002, a strain with two mutations in the S amino acids, including one in its RBD. The vaccine also provided cross-neutralization against 15 different S-pseudotyped viruses. These suggested that a vaccine targeting one variant of S can provide cross-protection against multiple viral strains with mutations in S. The regimen of DNA priming/Protein boosting can be applied to the development of other coronavirus vaccines.


Subject(s)
Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Cross Protection , Middle East Respiratory Syndrome Coronavirus/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, DNA/immunology , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Coronavirus Infections/mortality , Coronavirus Infections/virology , Disease Models, Animal , Female , Humans , Immunity, Cellular , Immunization, Secondary , Immunogenicity, Vaccine , Mice , Plasmids/administration & dosage , Plasmids/genetics , Plasmids/immunology , Spike Glycoprotein, Coronavirus/genetics , Vaccination , Vaccines, DNA/administration & dosage , Viral Vaccines/administration & dosage
3.
Immunobiology ; 225(3): 151955, 2020 05.
Article in English | MEDLINE | ID: covidwho-309013

ABSTRACT

SARS Coronavirus-2 (SARS-CoV-2) pandemic has become a global issue which has raised the concern of scientific community to design and discover a counter-measure against this deadly virus. So far, the pandemic has caused the death of hundreds of thousands of people upon infection and spreading. To date, no effective vaccine is available which can combat the infection caused by this virus. Therefore, this study was conducted to design possible epitope-based subunit vaccines against the SARS-CoV-2 virus using the approaches of reverse vaccinology and immunoinformatics. Upon continual computational experimentation, three possible vaccine constructs were designed and one vaccine construct was selected as the best vaccine based on molecular docking study which is supposed to effectively act against the SARS-CoV-2. Thereafter, the molecular dynamics simulation and in silico codon adaptation experiments were carried out in order to check biological stability and find effective mass production strategy of the selected vaccine. This study should contribute to uphold the present efforts of the researches to secure a definitive preventative measure against this lethal disease.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/drug therapy , Pandemics , Pneumonia, Viral/drug therapy , Viral Proteins/chemistry , Viral Vaccines/biosynthesis , Amino Acid Sequence , Betacoronavirus/drug effects , Betacoronavirus/pathogenicity , COVID-19 , COVID-19 Vaccines , Computational Biology/methods , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Disease Progression , Epitopes/chemistry , Epitopes/immunology , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , HLA Antigens/genetics , HLA Antigens/immunology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immunogenicity, Vaccine , Molecular Docking Simulation , Plasmids/chemistry , Plasmids/immunology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Protein Conformation , Reverse Genetics/methods , SARS-CoV-2 , Sequence Alignment , Vaccines, Subunit , Viral Proteins/genetics , Viral Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL